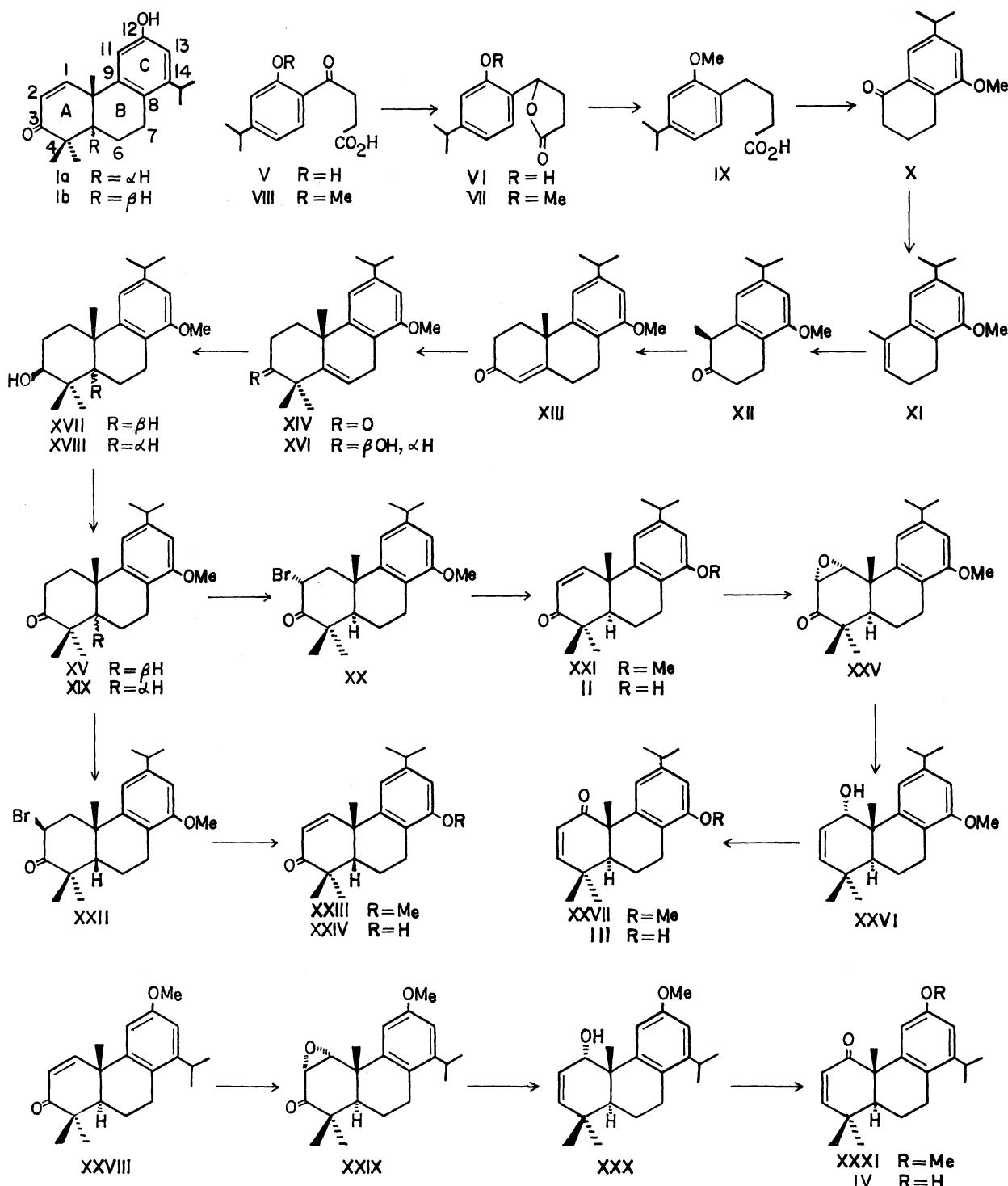


SYNTHESIS OF (\pm)-14-HYDROXY-12-ISOPROPYL-3-OXOPODOCARPA-1,8,11,13- AND (\pm)-14-HYDROXY-12-ISOPROPYL-1-OXOPODOCARPA-2,8,11,13-TETRAENES, AND (\pm)-12-HYDROXY-1-OXOTOTARA-2,8,11,13-TETRAENE

Takashi MATSUMOTO, Tōru OHNO, Hitoshi FUJITA, and Kenji FUKUI

Department of Chemistry, Faculty of Science, Hiroshima University
Hiroshima 730


For structural elucidation of shonanol, (\pm)-14-hydroxy-12-isopropyl-3-oxopodocarpa-1,8,11,13-tetraene (II), (\pm)-14-hydroxy-12-isopropyl-1-oxopodocarpa-2,8,11,13-tetraene (III), and (\pm)-12-hydroxy-1-oxototara-2,8,11,13-tetraene (IV) were synthesized. However, the synthetic II-IV were shown to be not identical with shonanol.

Shonanol was isolated from Libocedrus formosana by Lin and Liu.¹⁾ On the basis of spectral studies, its structure was tentatively deduced to be I, which is unique among tricyclic diterpenoids in containing an α, β -unsaturated keto group in ring A and a hydroxyl group at the position meta to the isopropyl group in ring C. In a previous communication,²⁾ the present authors reported the total synthesis of (\pm)-12-hydroxy-3-oxototara-1,8,11,13-tetraene (Ia) and its cis-isomer (Ib), and suggested that the structure of shonanol is not represented as Ia or Ib. Subsequently, we attempted the synthesis of some isomers of I to know their spectral and physical properties, and to compare them with natural shonanol. This communication³⁾ will describe the total synthesis of 14-hydroxy-12-isopropyl-3-oxopodocarpa-1,8,11,13-tetraene (II), 14-hydroxy-12-isopropyl-1-oxopodocarpa-2,8,11,13-tetraene (III), and 12-hydroxy-1-oxototara-2,8,11,13-tetraene (IV), and the non-identity of the synthetic II-IV with shonanol.

Reduction of β -(2-hydroxy-4-isopropylbenzoyl)propionic acid (V)²⁾ with sodium borohydride, followed by treatment of the resulting alcohol with dilute sulfuric acid gave a γ -lactone (VI, mp 110-111.5°C), which was then methylated with diazomethane to give the corresponding methyl ether (VII, IR: 1765 cm⁻¹). This was also prepared by a similar reduction of β -(4-isopropyl-2-methoxybenzoyl)propionic acid (VIII).²⁾ The lactone (VII) was hydrogenolyzed using palladium-charcoal to give an acid (IX). Treatment of IX in benzene with phosphorous pentachloride, followed by intramolecular cyclization of the resulting acid chloride with anhydrous stannic chloride, gave a 1-tetralone derivative.

tive (X, IR: 1670 cm^{-1}). The Grignard reaction of X with methylmagnesium iodide afforded the corresponding alcohol which by dehydration with dilute sulfuric acid gave a dihydronaphthalene derivative (XI). This was then converted to 7-isopropyl-5-methoxy-1-methyl-2-tetralone (XII, mp $70\text{--}73^\circ\text{C}$, IR: 1710 cm^{-1}) by oxidation with perbenzoic acid and subsequent treatment with dilute sulfuric acid. Construction of the A ring was achieved by condensation of XII with methyl vinyl ketone in the presence of sodium amide, and an α,β -unsaturated ketone (XIII, mp $100.5\text{--}102^\circ\text{C}$, IR: 1663 cm^{-1}) was thus obtained. Methylation of XIII with methyl iodide in the presence of potassium t-butoxide gave 12-isopropyl-14-methoxy-3-oxopodocarpa-5,8,11,13-tetraene (XIV). Catalytic hydrogenation of XIV over platinum oxide in acetic acid afforded a cis-A/B-ring isomer (XV); IR: 1700 cm^{-1} ; NMR: 0.80, 1.11, and 1.23 (each s, $\text{C}_4-(\text{CH}_3)_2$ and $\text{C}_{10}-\text{CH}_3$), 1.24 (d, $J=7\text{ Hz}$, $-\text{CH}(\text{CH}_3)_2$), 3.78 (s, $-\text{OCH}_3$), 6.43 and 6.71 (each bs, $\text{C}_{11}-\text{H}$ and $\text{C}_{13}-\text{H}$); as a major product. To obtain the trans-isomer, XIV was reduced with lithium aluminum hydride to give an alcohol (XVI),⁴⁾ which by catalytic hydrogenation over palladium-charcoal in methanol at $60^\circ\text{C}/50\text{ atm}$. gave a mixture of dihydro derivatives (ca. 1:5 ratio). Since the NMR spectra of these minor (XVII) and major alcohol (XVIII) showed signals at δ 0.43, 1.00, 1.17 ppm and at δ 0.84, 1.03, 1.17 ppm, due to methyl groups at the C-4 and C-10 positions, the configurations of the A/B ring junction in XVII and XVIII were assigned as cis and trans respectively. The alcohols, XVII and XVIII, were oxidized with Jones' reagent to give respectively XV and 12-isopropyl-14-methoxy-3-oxo-podocarpa-8,11,13-triene (XIX); mp $92.5\text{--}93^\circ\text{C}$; IR: 1700 cm^{-1} ; NMR: 1.12, 1.28, and 1.30 (each s, $\text{C}_4-(\text{CH}_3)_2$ and $\text{C}_{10}-\text{CH}_3$), 1.23 (d, $J=7\text{ Hz}$, $-\text{CH}(\text{CH}_3)_2$), 3.74 (s, $-\text{OCH}_3$), 6.37 and 6.60 (each bs, $\text{C}_{11}-\text{H}$ and $\text{C}_{13}-\text{H}$). Bromination of XIX with cupric bromide gave a bromo derivative (XX); IR: 1720 cm^{-1} ; NMR: 5.03 (dd, $J=13$ and 6 Hz, $-\text{CHBr}-$); which was then dehydrobrominated with lithium carbonate and lithium chloride in dimethylformamide to give an α,β -unsaturated keto derivative (XXI), mp $119\text{--}120^\circ\text{C}$, IR: 1660 cm^{-1} . The methyl ether (XXI) was then demethylated with boron tribromide to give II, mp $155.5\text{--}156^\circ\text{C}$; IR: 3600, 3400, 1660 cm^{-1} ; UV: $\lambda_{\text{max}}^{\text{EtOH}}$ nm (ϵ): 225 (19,600), 279 (1,400); NMR: 1.18 and 1.21 (each s, $\text{C}_4-(\text{CH}_3)_2$), 1.20 (d, $J=7\text{ Hz}$, $-\text{CH}(\text{CH}_3)_2$), 1.40 (s, $\text{C}_{10}-\text{CH}_3$), 5.89 (s, $-\text{OH}$), 5.94 and 7.55 (each d and $J=10\text{ Hz}$, $-\text{COCH}=\text{CH}-$), 6.40 and 6.48 (each s, $\text{C}_{11}-\text{H}$ and $\text{C}_{13}-\text{H}$). The spectral data of II were different from those of natural shonanol.¹⁾ Similarly, XV was also brominated to give a bromide (XXII); IR: 1720 cm^{-1} ; NMR: 4.80 (dd, $J=13$ and 4 Hz, $-\text{CHBr}-$); which was then converted to the corresponding unsaturated compound (XXIII); IR: 1667 cm^{-1} ; NMR: 0.74 and 1.19 (each s, $\text{C}_4-(\text{CH}_3)_2$), 1.22 (d, $J=7\text{ Hz}$, $-\text{CH}(\text{CH}_3)_2$), 1.42 (s, $\text{C}_{10}-\text{CH}_3$), 3.76 (s, $-\text{OCH}_3$), 5.81 and 7.07 (each

d and $J=10$ Hz, $-\text{COCH}=\text{CH}-$), 6.41 and 6.63 (each s, $\text{C}_{11}\text{-H}$ and $\text{C}_{13}\text{-H}$). Although conversion of XXIII (insufficient for demethylation) to 14-hydroxy-12-isopropyl-3-oxo-5 β H-podocarpa-1,8,11,13-tetraene (XXIV) was not carried out, the NMR spectrum of XXIII suggested that shonanol is not represented as XXIV. Finally, preparation of the 1-oxo

derivatives (III, IV) was also carried out as follows. Oxidation of XXI with alkaline hydrogen peroxide, followed by treatment of the resulting epoxide (XXV) with hydrazine hydrate⁵⁾ gave an alcohol (XXVI). This was then oxidized with Jones' reagent to give 12-isopropyl-14-methoxy-1-oxopodocarpa-2,8,11,13-tetraene (XXVII); mp 124.5-125°C; IR: 1673 cm⁻¹; NMR: 5.77 and 6.35 (each d and J=10 Hz, -COCH=CH-). Demethylation of XXVII with boron tribromide gave the phenol (III); mp 185.5-186°C; IR: 3600, 3375, 1670 cm⁻¹; UV: $\lambda_{\text{max}}^{\text{EtOH}}$ nm (ε): 223 (16,700), 281 (2,200); NMR: 1.18 (s, C₄-(CH₃)₂), 1.24 (d, J=7 Hz, -CH(CH₃)₂), 1.58 (s, C₁₀-CH₃), 2.87 (m, -CH(CH₃)₂), 5.34 (bs, -OH), 5.90 and 6.48 (each d and J=10 Hz, -COCH=CH-), 6.52 and 7.21 (each d and J=1.5 Hz, C₁₁-H and C₁₃-H). Subsequently, 12-methoxy-3-oxototara-1,8,11,13-tetraene (XXVIII)²⁾ was also converted to the corresponding phenol (IV); mp 201.5-202°C; IR: 3597, 3313, 1675 cm⁻¹; UV: $\lambda_{\text{max}}^{\text{EtOH}}$ nm (ε): 223 (16,100), 285 (2,400); NMR (CDCl₃): 1.19 (s, C₄-(CH₃)₂), 1.17 and 1.23 (each d and J=6.5 Hz, -CH(CH₃)₂), 1.58 (s, C₁₀-CH₃), 5.95 and 6.53 (each d and J=10 Hz, -COCH=CH-), 6.72 and 7.21 (each d and J=3 Hz, C₁₁-H and C₁₃-H), 7.25 (s, -OH); via an epoxide (XXIX), an alcohol (XXX), and an α,β-unsaturated ketone (XXXI); IR: 1680 cm⁻¹; NMR: 5.75 and 6.35 (each d and J=10 Hz, -COCH=CH-). The synthetic III and IV were also shown to be not identical with natural shonanol by spectral comparisons.

REFERENCES

IR spectra were taken in chloroform and NMR spectra in carbon tetrachloride at 60 MHz unless otherwise specified. Their chemical shifts are presented in terms of δ values; s: singlet, bs: broad singlet, d: doublet, dd: double doublet, m: multiplet.

- 1) Y. T. Lin and K. T. Liu, J. Chinese Chem. Soc. Taiwan, 12, 51 (1965); Chem. Abstr., 63, 16772 (1965).
- 2) T. Matsumoto, I. Tanaka, T. Ohno, and K. Fukui, This Letters, 1973, 321.
- 3) Although the formula depicted represented only one enantiomer, they are taken to mean a racemate.
- 4) The β-configuration of hydroxyl group at the C-3 position was assigned by analogy with a similar reduction of 12-methoxy-3-oxopodocarpa-5,8,11,13-tetraene: M. Fetizon and G. Moreau, Bull. Soc. Chim. Fr., 1965, 3479.
- 5) H. W. Whitlock, Jr., P. B. Reichardt, and F. M. Silver, J. Amer. Chem. Soc., 93, 485 (1971).

(Received September 3, 1973)